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Diluted neural network with refractory periods
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1Centro Brasileiro de Pesquisas Fı´sicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil
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We study an extreme and asymmetrically diluted version of the Hopfield model when the refractory period
is taken into account in the dynamics of the neurons through a time dependent threshold. We present an
analytical approach that allows one to preserve, in an approximate way, the dependence of the system on its
whole history. In particular, we obtain a recurrent equation for the overlap from which one can analyze the
retrieval capacity. We also perform numerical simulations that are well fitted by our analytical results. De-
pending on the amplitude of the potential that mimics the effect of the refractory period and on the ratioa
between the number of stored patternsp and the mean connectivity per neuronC, the system presents different
dynamical behaviors and retrieval abilities.@S1063-651X~97!15603-3#

PACS number~s!: 87.10.1e, 84.35.1i, 64.60.Ht
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I. INTRODUCTION

In the past decade a huge effort has been devoted to
study of the Hopfield model for associative memory@1#. It
basically consists of afully connectednetwork of binary
units evolving according to a threshold dynamics a
coupled through asymmetricsynaptic matrix. Both the sym
metry of the couplings and the full connectivity make t
model mathematically tractable, and its analogy with Is
spin glasses models is straightforward. One can also in
duce a noise parameterT that mimics the randomness in
volved in the biological process@2#, and treat it as a gener
alized temperature introduced through a stochastic Mo
Carlo dynamics. Now the long-time behavior of the mod
can be easily obtained from a thermodynamical analysis
follows that usually applied to mean-field Ising spin gla
models. Recently, Coolen and Sherrington@3# have devel-
oped a procedure that reproduces the correct dynanical e
tions of the fully connected Hopfield model~near saturation!
for short times and in equilibrium. For intermediate tim
scales, it does not lead to the exact equations, but succee
capturing the main characteristics of the flows in the or
parameter plane@4#.

However, biological neural networks have a high deg
of asymmetry in its synapses and are sparsely interc
nected. This means that those two elements that make
Hopfield model mathematically tractable, namely,full con-
nectivity and symmetry, simultaneously limit seriously its
ability for modeling real systems. In order to improve t
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model from a biological point of view, different modifica
tions have been introduced in the literature. Most of th
preserve the Hebbian prescription for the synaptic mat
and add biological ingredients like dilution and asymmet
among others@5–9#. The main mathematical consequence
removing symmetry in the synapses is to eliminate a sta
tical mechanics approach. One is then restricted to study
only the dynamics of the system, which is hard to treat a
lytically. A simple way of introducing both dilution and
asymmetry is to cut the synapsesJi j andJji with probability
(12C/N) independently of each other, whereC is the mean
connectivity of each neuron andN the number of neurons in
the network. In particular, in the strong dilution lim
C! lnN, Derrida, Gardner, and Zippelius@10# solved exactly
the dynamics of the systems. Further, Arenzon and Lem
@11# have shown through numerical simulation that this a
lytical approach is also valid for the less strong conditi
C!N.

On the other hand, it is also well known that after firing
spike, a neuron is unable to fire again, for a period of time
the order of 2 ms and irrespective of its afferent potent
This short period is known as theabsolute refractory period
~ARP!. Following this ARP and during about 4 ms the ne
ron can fire again but now with a greater potential thresh
which decreases with time. This second interval is known
the relative refractory period. In the last year, a lot of work
has been devoted to studying different ways of including t
biological feature in several neural models, but most of th
treat fully connected versions which are very unplausi
@12–19#. The simplest way of modeling this behavior is
introduce a time dependent threshold that acts only on th
neurons that have emitted a signal and favors them to b
rest during a given time interval.

In the present work we introduce a time dependent thre
old that mimics the refractory periods in an extremely dilut
Hopfield model. We will see that, unlike the usual extreme
diluted version, one cannot now neglect temporal corre
tions. In this sense one can say that this work is not a m
extension of calculation introduced in@10#, but includes a
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55 3321DILUTED NEURAL NETWORK WITH REFRACTORY PERIODS
different mathematical approach. We obtain a recurr
equation for the overlap between the state of the system
the memories that take into account, in an approximate fo
the whole history of the network. We also show that ou
analytical results, although not exact, fit very well with tho
observed in numerical simulations. This paper is organi
as follows. In Sec. II we introduce the model. In Sec. III w
describe our analytical approach and present the result
Sec. IV we compare the analytical results with those
tained through numerical simulations. Finally, in Sec. V w
discuss the main results.

II. MODEL

Let us consider a network ofN binary neurons, each on
modeled by an Ising-like variableSi ( i51,N), which can
take the values$21,11% representing the passive and acti
states, respectively. The time evolution of the network
time t11 is governed by a synchronous stochastic dynam
ruled by the following probability:

Prob„Si~ t11!…5 1
2 „11Si~ t11!tanhb0hi~ t !…, ~1!

whereb051/T0 measures the noise level of the network a
hi(t) denotes the post-synaptic potential~PSP! of the i th
neuron at timet

hi~ t !5hi
H~ t !2

D0

2
~Si~ t !11!. ~2!

Here hi
H denotes the usual Hopfield PSP with asymme

dilution,

hi
H5(

jÞ i

N

Ci j Ji j Sj~ t !, ~3!

and the synaptic matrixJi j is defined by the Hebbian rule

Ji j5 (
m51

p

j i
mj j

m . ~4!

The j i
m’s are quenched random independent variables tak

the values61 with equal probability. Hencej i
m denotes the

state of the i th neuron in the mth stored pattern
(m51, . . . ,p). Ci j ’s introduce the asymmetric dilution o
the synapses, and are random variables chosen accordi
the following distribution:

r~Ci j !5
C

N
d~Ci j21!1S 12

C

ND d~Ci j !. ~5!

Then C is the mean connectivity per neuron. The seco
term in Eq.~2! is included to mimic the refractory period. I
neuroni emits a spike at timet „Si(t)511…, then an extra
contribution to the PSP2D0 acts like a time dependen
threshold which favors the neuron to be at rest att11. If, on
the other hand, neuroni is inactive „Si(t)521…, then it
works like an usual Hopfield neuron. It is important here
stress that this model does not distinguish between abso
and relative periods. Instead, it considers a kind of averag
t
nd
,
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determine the refractory periods: largeD0 means thatDt is
about of 2 ms, while smallD0 means thatDt is about 4 or 5
ms.

Due to the lack of detailed balance in the dynamics of o
model, it is not possible to use a thermodynamical approa
Thus, in this paper we will restrict ourselves to consider
long-time dynamical behavior of the system by looking fo
recurrent equation for the macroscopic overlap between
state of the system and the memories, defined as

mm~ t !5
1

N (
i51

N

j i
m^Si~ t !&. ~6!

Here ^ & denotes both an average over the initial conditio
and a thermal one.

It is important to note that in our model the violation o
the detailed balance condition is not only due to the asy
metry of the synapses, but also to the inclusion of the ti
dependent threshold. In the absence of this term, the
calledstrong dilutionconditionC! lnN allows one to obtain
an exact recurrent equation formm by replacing the
quenched average by an annealed one@10#. However, when
the refractory period is included as a threshold that depe
on the state of the same neuron, this approach is not lon
valid. Thus we are forced to take into account the wh
history of the network. Since an exact analytical treatm
along these lines is too hard to be implemented in our mo
in Sec. III we introduce and develop an approximate meth
from which we study its recognition ability. The validity o
our approach is tested in Sec. V, where we performe
numerical study of the system.

III. DYNAMICAL EQUATION

We start by assuming that the initial configuratio
$Si(0)% has a macroscopic overlap only with the fir
memory@m1(0)5m andmm(0);O(N21/2) for m.1], and
that the system will never jump to another memory attrac
That is, the otherp21 overlap will be always macroscop
cally zero. This last assumption is justified by our numeri
results, as described in Sec. V. From definition~1!, and after
taking the thermodynamical limitN→`, m1(t11)
[m(t11) can be rewritten as

m~ t11!5
1

N(
i51

N

j i
1tanhb0S hiH~ t !2

D0

2
„Si~ t !11…D

5 K K j i
1tanhb0S hiH~ t !2

D0

2
„Si~ t !11…D L L , ~7!

where ^^ && denotes a configurational average over t
quenched random variables$j i

m%. Note that although we
have already made the thermal average, in Eq.~7! we main-
tain the explicit dependence onSi(t) of the refractory term.
In a mean-field approach one would replace it byj i

1m(t).
We have in fact performed this calculation, but the resu
obtained showed to be far from describing the numeri
ones. Instead we preserve such dependence on the histo
the system by averaging againSi(t) according to Eq.~1!. In
doing so, we now also include a dependence ont21. The
same procedure can now be repeated until we finally at
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3322 55da SILVA, TAMARIT, AND CURADO
the initial stateSi(0). It can beeasily verified that this
mechanism yields to the following expression:

m~ t11!5 1
2 ^^j i

1Ai~ t !&&1
1

22
^^j i

1Bi~ t !Ai~ t21!&&

1
1

23
^^j i

1Bi~ t !Bi~ t21!Ai~ t22!&&1•••

1
1

2t11 ^^j i
1Bi~ t !Bi~ t21! . . .Bi~1!Ai~0!&&

5K K j i
1(
l50

t
1

2l11Ai~ t2 l !)
q51

l

Bi„t2~q21!…L L ,
~8!

whereAi(t) andBi(t) are given by

Ai~ t !5tanh@b0~hi
H~ t !2D0!#1tanh@b0hi

H~ t !#,

Bi~ t !5tanh@b0~hi
H~ t !2D0!#2tanh@b0hi

H~ t !#. ~9!

Next we assume that the temporal correlations am
states of the system at different times can be neglected,
all factors at different times in each term in Eq.~8! can be
independently averaged:

K K Ai~ t2 l !)
q51

l

Bi„t2~q21!…L L
5^^Ai~ t2 l !&&)

q51

l

^^Bi„t2~q21!…&&. ~10!

This assumption, together with the strong dilution con
tion, makes our problem mathematically tractable. Un
these conditions,hi(t) can be considered as a random va
able which, in the limitC→`, p→` with a[p/C constant,
has a Gaussian distribution whose mean value and vari
arem anda, respectively. After some standard calculation
we then obtain the following approximation for the recurre
equation:

m~ t11!5(
l50

t
1

2l12FA2~ t2 l !)
q51

l

B2„t2~q21!…

1~21! lA1~ t2 l !)
q51

l

B1„t2~q21!…G ,
~11!
g
e.,

-
r
-

ce
,
t

with

A6~ t !5E Dz@ tanh„b~m~ t !1zAa6D!…

1tanh„b~m~ t !1zAa!…#,

B6~ t !5E Dz@ tanh„b~m~ t !1zAa6D!…

2tanh„b~m~ t !1zAa!…#. ~12!

Hereb51/T5C/T0 andD5D0 /C define the reduced tem
perature and the reduced refractory parameter, respecti
andDz is given by

Dz5
dz

A2p
e2z2/2.

Note that forD50, B6(t)50 for all t and only the term
l50 survives in Eq.~11!. So we recover the expression o
tained by Derrida, Gardner, and Zippelius in@10#.

In spite of our approximations, Eq.~11! still depends on
the whole history of the neuron. A first simplification con
sists in truncating the series to a given finite order, that
taking into account only thel previous states of the network
In doing so, we first observe that it always yields to a fix
point attractor, independently of the order of the truncati
Finally, we also verify that for small values ofD a truncation
to order 4 seems to be enough to fit the numerical res
while for largeD all the terms are necessary. In what follow
we assume that the system always evolves to a fixed po
and that the corresponding equation takes the form

m5
1

4 (
l50

`
1

2l
@A2B2

l 1~21! lA1B1
l #. ~13!

HereA6 andB6 are given by Eq.~12! with m(t)5m for all
t. In Sec. V we will show through the numerical results th
this assumption is valid for a wide range of values ofD.
Fortunately, it can be easily verified that in the limitl→`
this series converges to the following expression:
m5
1

2 (
s56

E Dz@ tanh„b~m1zAa2sD!…1tanh„b~m1zAa!…#

22sE Dz@ tanh„b~m1zAa2sD!…2tanh„b~m1zAa!…#

. ~14!
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55 3323DILUTED NEURAL NETWORK WITH REFRACTORY PERIODS
A. Finite number of memories

Next we consider thea50 case, for which Eq.~14! take
the simple form

m5
1

2 (
s56

tanh„b~m2sD!…1tanh~bm!

22s@ tanh„b~m2sD!…2tanh~bm!#
. ~15!

Figure 1 displays the phase diagramD vsT. For any value of
D the system suffers a second order phase transition fro
recognition phase (R) characterized by amÞ0 attractor to a
paramagnetic phase (P) characterized by them50 solution.
Since the transition is continuous, we expand Eq.~15! for
small values ofm, and obtain the following expression fo
the critical line:

Tc5
412tanh~bcD!22tanh2~bcD!

„21tanh~bcD!…2
. ~16!

As D→0, we then obtain the well known standard Hopfie
case withTc51. On the other hand, forD→` we obtain
T*54/950.444 . . . . In therecognition phase we observ
three different behaviors. For small values ofD the retrieval
is almost perfect (m'1). For large values ofD the recogni-
tion ability is very poor, even atT50, withm<0.5. Finally,
in the intermediate region (0.5,D,1) the retrieval regime
depends on the temperature: forT,0.254 we found a smal
region (C) where these two different retrieval solutions c
exist, one close to 1 and the other close to 0.5. The sys
chooses one or the other depending on the initial value of
overlap. ForT.0.254 the system goes continuously from t
high recognition regime to the poor one asD increases.

In Fig. 2 we present the behavior of the overlapm as a
function ofD for different values ofT. ForT50 and 0.1, we
observe the three different regimes described in Fig. 1.
smallD the system has only one stable solutionm'1; that
is, for any macroscopic initial overlap with the memory t
system almost perfectly recognizes the pattern. AsD in-
creases the system suffers a first order dynamical trans
where a retrieval attractor emerges withm'0.5. The dashed

FIG. 1. Phase diagramD vs T for a50.
a

m
e

or

on

lines indicate the unstable solutions that separates the ba
of attraction of the two coexisting stable solutions. Final
for largeD the system undergoes a dynamical phase tra
tion where the solution with high overlap discontinuous
disappears. In this phase the system can only poorly rec
nize the memory for any finite initial overlap. ForT50.4 the
system always recognizes the pattern, but its performa
decreases asymptotically to a finite value asD increases. The
same behavior is observed in the interv
0.254,T,0.444 . . . . Finally, for T50.5 we see that the
system suffers a second order dynamical transition from
retrieval phase to the paramagnetic phase, and this beha
is qualitatively the same for any temperature such t
0.444,T,1 ~see Fig. 1!.

B. Infinite number of memories

In this section we consider theaÞ0 case. Let us star
analyzing the noiseless caseT50 for which we have per-
formed numerical simulations. After same simple calcu
tions, Eq.~14! takes the following form:

m5
1

2 (
s56

erfSm2sD

A2a
D 1 erfS m

A2a
D

22sF erfSm2sD

A2a
D 2 erfS m

A2a
D G . ~17!

In Fig. 3 we present the phase diagramD vs a. Note that in
this case the parametera plays a similar role to the tempera
ture in thea50 limit. The second order transition lines a
displayed for the truncated series to ordersl54, 6, and 8
and when the whole series is taken into account (l5`). Note
that, as we previously stressed, for smallD it is enough to

FIG. 2. The final overlapm as a function ofD for a50 and for
different values ofT (0, 0.1, 0.4, and 0.5).
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3324 55da SILVA, TAMARIT, AND CURADO
truncate the series to order 4, but for largeD one has to sum
over all the terms. Expanding the former equation for sm
values ofm, we obtain the following relation between th
parametersD anda at the critical line:

ac5
8

p F 11 erfS D

A2ac
D 1e2D2/2ac

F21 erfS D

A2ac
D G 2 G 2. ~18!

For D50 we recover the maximum stored capac
ac52/p obtained in@10#. In the opposite limitD→`, the
transition line tends asymptotically toa*532/81p'0.125.

FIG. 3. Phase diagramD vs a at T50. The critical line sepa-
rating the paramagnetic and retrieval phase is showed forl54, 6,
8, and`.
e

ro
e
a

ll In Fig. 4 we plotm as a function ofa andD when the
initial configuration is close to the related pattern (m0'1).
For D50 we recover the transition line obtained in@10,11#.
For largeD and smalla this equation predicts that the sy
tem retrieves the pattern with a low value of the overla
Actually, as will be discussed in Sec. IV, in this region th
systems recognizes through a cycle 2 orbit. Thus our ini
assumption concerning the existence of a fixed point att
tor fails. Nevertheless, in this cyclic orbit the parameterm
fluctuates around a value that agrees very well with that
tained from the fixed point equation.

Finally, we also consider theTÞ0 case. Expanding Eq
~14! for smallm, we obtain after some calculations the equ
tion for the critical surface in the space (T,a,D),

FIG. 4. The overlap as a function ofa and D at T50 with
initial overlapm051.
Tc52F 21E Dz~ f12 f 0!2E Dz f0
2S 11E Dz f1 D2E Dz f1

2 S 12E Dz f0D
F21E Dz~ f12 f 0!G2 G , ~19!
o-

re-
la-
x-

zon
el
s

where f1 and f 0 are given by

f15tanhSAaz1D

Tc
D , f 05tanhSAaz

Tc
D .

In Fig. 5 we show the phase diagram in theT, a, andD
space. ForD50 and largea the critical line approaches th
T50 axis continuously atac52/p @10#. Along the critical
surface the system undergoes a continuous transition f
the retrieval phase~below! to the paramagnetic phas
~above!. Note that below this critical surface there exists
m

small volume where two different recognition solutions c
exist, but is not shown in this diagram.

IV. NUMERICAL SIMULATIONS

In order to test the results of the analytic approach p
sented in this paper, we also performed numerical simu
tions of our model in the noiseless limit. Actually, the e
treme dilution conditionC! lnN is hard to implement in any
computer but, as stressed in Sec. I, in a recent paper Aren
and Lemke showed for the ultradiluted Hopfield mod
~without refractory period! that the analytical approach i
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55 3325DILUTED NEURAL NETWORK WITH REFRACTORY PERIODS
also valid for the less strong conditionC!N. To implement
the evolution of the system we use a synchronous upda
dynamics, which can be conveniently expressed in term
the overlap between the states$Si% and the first memoryj i

1

~7! as follows:

Si~ t11!5sgnF j i
1m~ t !1

1

C(
q51

C

(
mÞ1

p

j i
mjq

mSq~ t !

2
D

2
„Si~ t !11…G . ~20!

Here the first term~signal! tends to align the system with th
stored pattern, the second one acts as a noise due to a
other uncorrelated patterns, and the last one models the e
of the refractory periods.

To analyze the recognition ability we always start with
initial configuration correlated with the first memory. Afte
an initial transient, we measure the temporal average of
overlapm(t) between the first pattern and the state of
system. This procedure is repeated for 50 different sam
using different memories, initial configurations, and rand
number sequences, in order to make a configurational a
age m. We work with systems of sizesN540 000 and
80 000, and with connectivityC540 and 80.

In Fig. 6 we display the phase diagramD vs a for
T50. The full line corresponds to the analytical critical lin
in theC→` limit, and the full circle are the results of ou
numerical simulations forN580 000 andC580. Note that,
for small and large values ofD, both results agree very wel
In the first case~small D) the feedback effect due of th
statesS51 is not very important compared to large sign
term. In this region the Markovian process given by me
field approximation presents similar results.

FIG. 5. Critical surface separating the retrieval phase~below!
from the nonretrieval phase~above! in the space of parameter
(T,a,D).
g
of

the
ect

e
e
es

r-

l
-

For largeD, the whole history of the system is decisive
the behavior of the network. Since the parameterD is greater
than the signal term, the temporal evolution drives the s
tem to a regime where~i! all those neurons for which the firs
memory is in an inactive state (j i

1521) align with the
memory (Si521); and~b! all those neurons for which the
first memory is in an active statej i

151 oscillate between the
active and inactive states. Of course this behavior is dest
lized by the effect of the other memories asa increases. For
small a the system is characterized by a periodic regi
~cycles of order 2! around ofm(t→`).0.5.

In Figs. 7~a! and 7~b! we present the overlap as a functio
of a for T50 along two cuts,D50.2 and 0.7, respectively
Observe that forD50.2 the analytical~full line! and the
simulations ~symbols! agree well. On the other hand, fo
D50.7 @Fig. 7~b!#, the numerical results only describe th
behavior qualitatively. In particular, note that it shows t
coexisting phase. The dashed line indicates the unstable
lution that separates the two basins of attraction, and wh
has not been studied numerically.

In Fig. 8 we plot im(t)i versus the time for
D51.4, N580 000, C580, and several values ofa. Since
we are considering a large value ofD andm(0)51, in the
first Monte Carlo step the dynamics drives the system t
state withm'0, from which it sometimes evolve to th
antimemory instead of the memory. Because the system
ognizes both the memory and the antimemory, we prefe
consider the modulus of the overlap. For smalla50.0375
the final overlap converges to the cycle 2 regime with a m
value of aroundm.0.3, signaling the existence of spuriou
states~not predicted by the analytical approach!. As a in-
creases, the spurious states vanish, and the overlap rea
the attractor~mean value! m.0.5. The amplitude of the os
cillation of the cycle-2 attractor diminishes witha, staying

FIG. 6. The critical line separating the paramagnetic and
trieval phases in theD vs a plane atT50. The solid line corre-
sponds to the analytical solution forl→`. The full circles corre-
spond to the numerical simulations withC580 andN580 000.
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3326 55da SILVA, TAMARIT, AND CURADO
near its mean value. For largea, the attractor converges to
regime with cycle of order greater than 2 or chaotic orb
~not the retrieval phase!.

V. CONCLUSIONS

In this paper we analyze the dynamics of a neural netw
with random dilution and asymmetry in the synaptic co
plings, and also included a threshold that mimics the refr
tory periods. This last ingredient is introduced through a ti
dependent threshold that gives place to feedback effect
the dynamics of the system. We introduce and develop
analytical method that allows us to study the long-time

FIG. 7. The overlapm vs a at T50. The full lines correspond
to the analytical solutions.~a! D50.2 with, m051, N580 000,
C540 ~empty circles!, andC580 ~full circles!. ~b! D50.70, with
C580: the empty circles and squares correspond tom050.6 for
N540 000 and 80 000, respectively. The full circles and squa
correspond tom051 for N540 000 and 80 000, respectively.
s

k
-
c-
e
on
n
-

havior of the system. By neglecting temporal correlations
were able to take into account the whole history of the s
tem, and so analyze how the refractory periods affects
dynamics and the retrieval ability of our model.

We obtain the complete phase diagram of the model b
analytically and numerically. Unlike the fully connecte
Hopfield model with refractory periods@19#, for which a
large value ofD destabilizes the stored patterns complete
in the strongly diluted version we verify that for small valu
of a the system canalwaysretrieve the pattern, irrespectiv
of the value ofD. Actually, for largeD the retrieval is per-
formed through periodic orbits~cycle 2! whose mean overlap
is well predicted by the fixed point assumption. For interm
diate values ofD and small values ofa, an unexpected rec
ognition phase appears where the network can retrieve
pattern with high or low quality, depending on how far fro
the patterns one starts. In this region, both the effect of
Hopfield term ~the signal! and the effect of the refractory
period compete, given place to these two different solutio

Our analytical results agree very well with those obtain
by numerical simulations for small and large values ofD. In
the intermediate region 0.5,D,1.0, where our approach
seems to be not very good~because temporal correlations a
important!, it predicts qualitatively well the observed result
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FIG. 8. im(t)i vs t for C580, N580 000, D51.4, and
a50.0375~full circles!, 0.05~full squares!, 0.1 ~full triangles!, and
0.125~full diamonds!.
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