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Diluted neural network with refractory periods
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We study an extreme and asymmetrically diluted version of the Hopfield model when the refractory period
is taken into account in the dynamics of the neurons through a time dependent threshold. We present an
analytical approach that allows one to preserve, in an approximate way, the dependence of the system on its
whole history. In particular, we obtain a recurrent equation for the overlap from which one can analyze the
retrieval capacity. We also perform numerical simulations that are well fitted by our analytical results. De-
pending on the amplitude of the potential that mimics the effect of the refractory period and on the ratio
between the number of stored pattepnand the mean connectivity per neur@nthe system presents different
dynamical behaviors and retrieval abiliti¢§1063-651X%97)15603-3

PACS numbg(s): 87.10:+e, 84.35+i, 64.60.Ht

[. INTRODUCTION model from a biological point of view, different modifica-
tions have been introduced in the literature. Most of them
In the past decade a huge effort has been devoted to th@eserve the Hebbian prescription for the synaptic matrix,
study of the Hopfield model for associative mem¢ty. It  and add biological ingredients like dilution and asymmetry,
basically consists of dully connectednetwork of binary = among other§5—9]. The main mathematical consequence of
units evolving according to a threshold dynamics andremoving symmetry in the synapses is to eliminate a statis-
coupled through aymmetricsynaptic matrix. Both the sym- tical mechanics approach. One is then restricted to studying
metry of the couplings and the full connectivity make theonly the dynamics of the system, which is hard to treat ana-
model mathematically tractable, and its analogy with Isinglytically. A simple way of introducing both dilution and
spin glasses models is straightforward. One can also intreasymmetry is to cut the synapsés andJ;; with probability
duce a noise parametdr that mimics the randomness in- (1—C/N) independently of each other, wheteis the mean
volved in the biological proceqd®], and treat it as a gener- connectivity of each neuron ardl the number of neurons in
alized temperature introduced through a stochastic Montéhe network. In particular, in the strong dilution limit
Carlo dynamics. Now the long-time behavior of the modelC<InN, Derrida, Gardner, and Zippelii0] solved exactly
can be easily obtained from a thermodynamical analysis thahe dynamics of the systems. Further, Arenzon and Lemke
follows that usually applied to mean-field Ising spin glass[11] have shown through numerical simulation that this ana-
models. Recently, Coolen and Sherring{@} have devel- lytical approach is also valid for the less strong condition
oped a procedure that reproduces the correct dynanical equ@<<N.
tions of the fully connected Hopfield modglear saturation On the other hand, it is also well known that after firing a
for short times and in equilibrium. For intermediate time spike, a neuron is unable to fire again, for a period of time of
scales, it does not lead to the exact equations, but succeedstire order of 2 ms and irrespective of its afferent potential.
capturing the main characteristics of the flows in the ordefThis short period is known as tlabsolute refractory period
parameter plang4]. (ARP). Following this ARP and during about 4 ms the neu-
However, biological neural networks have a high degreeon can fire again but now with a greater potential threshold
of asymmetry in its synapses and are sparsely intercorwhich decreases with time. This second interval is known as
nected. This means that those two elements that make ttike relative refractory periodIn the last year, a lot of work
Hopfield model mathematically tractable, nameiyll con-  has been devoted to studying different ways of including this
nectivity and symmetry simultaneously limit seriously its biological feature in several neural models, but most of them
ability for modeling real systems. In order to improve thetreat fully connected versions which are very unplausible
[12-19. The simplest way of modeling this behavior is to
introduce a time dependent threshold that acts only on those
*Electronic address: crsilva@cbpfsul.cat.copf.br. Also at Deparneurons that have emitted a signal and favors them to be at
tamento de Rica, Universidade Federal de Alagoas, Cidade Uni-rest during a given time interval.
versitaia, BR 101 Km 14 Norte, 57072-340 MaceiBrazil. In the present work we introduce a time dependent thresh-
Electronic address: tamarit@fis.uncor.edu old that mimics the refractory periods in an extremely diluted
*Also at International Centre of Condensed Matter Phy&®.  Hopfield model. We will see that, unlike the usual extremely
04667, 70919-970 Brasilia, Brayikind Department of Physics, diluted version, one cannot now neglect temporal correla-
Universidade de Brasilia, Brasilia, Brazil. Electronic address:tions. In this sense one can say that this work is not a mere
curado@iccmp.br extension of calculation introduced [d0], but includes a
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different mathematical approach. We obtain a recurrentletermine the refractory periods: largg means that\t is
equation for the overlap between the state of the system arsbout of 2 ms, while smalA; means that\t is about 4 or 5

the memories that take into account, in an approximate formms.

the whole history of the netwarkVe also show that our Due to the lack of detailed balance in the dynamics of our
analytical results, although not exact, fit very well with thosemodel, it is not possible to use a thermodynamical approach.
observed in numerical simulations. This paper is organizedhus, in this paper we will restrict ourselves to consider the
as follows. In Sec. Il we introduce the model. In Sec. Il we long-time dynamical behavior of the system by looking for a
describe our analytical approach and present the results. hecurrent equation for the macroscopic overlap between the
Sec. IV we compare the analytical results with those ob-state of the system and the memories, defined as

tained through numerical simulations. Finally, in Sec. V we

. . N
discuss the main results.

1
M) = 2 E(S(). ®)
Il. MODEL

) ) Here () denotes both an average over the initial conditions
Let us consider a network & binary neurons, each one 4nq a thermal one.

modeled by an Ising-like variabl& (i=1N), which can It is important to note that in our model the violation of
take the value$—1,+ 1} representing the passive and active the detailed balance condition is not only due to the asym-
states, respectively. The time evolution of the network ainetry of the synapses, but also to the inclusion of the time
timet+1 is governed by a synchronous stochastic dynamicgependent threshold. In the absence of this term, the so
ruled by the following probability: calledstrong dilutionconditionC<InN allows one to obtain
an exact recurrent equation fom* by replacing the
Prol(S(t+1))=z(1+S(t+ DtanhBohi(t)), (1) quenched average by an annealed [d@. However, when
the refractory period is included as a threshold that depends
on the state of the same neuron, this approach is not longer
valid. Thus we are forced to take into account the whole
history of the network. Since an exact analytical treatment
A along these lines is too hard to be implemented in our model,
hi(t)=h(t)— 70(3(t)+ 1). (2)  in Sec. Il we introduce and develop an approximate method
from which we study its recognition ability. The validity of

our approach is tested in Sec. V, where we performed a
Here h}* denotes the usual Hopfield PSP with asymmetrichumerical study of the system.

dilution,

whereBy=1/Ty measures the noise level of the network and
h;(t) denotes the post-synaptic potent{&SP of the ith
neuron at time

Ill. DYNAMICAL EQUATION

N
=2 C;J3;S(1), 3) We start by assuming that the initial configuration
17 {Si(0)} has a macroscopic overlap only with the first
memory[ m*(0)=m and m#(0)~O(N~*? for u>1], and
that the system will never jump to another memory attractor.
p That is, the othep—1 overlap will be always macroscopi-
3= 2 gret (4) cally zero. This last assumption is justified by our numerical
a=1 results, as described in Sec. V. From definitiah and after
taking the thermodynamical limitN—ow, mi(t+1)
The ¢'s are quenched random independent variables takingsm(t+1) can be rewritten as
the valuest 1 with equal probability. Hencé/* denotes the N
state of the ith neuron in the uth stored pattern 1 1
(u=1,...p). Cj's introduce the asymmetric dilution of m(t+1)= Nizl & tanhB,
the synapses, and are random variables chosen according to
the following distribution:

and the synaptic matri;; is defined by the Hebbian rule

A
h'(t) - 5 (SO +1)

A
=< <§%tanheo(hr‘<t>—7°(sm+1))>>, v

C
p(Cij) = oCij—D)+

1- N) o(Cij). ®) where (()) denotes a configurational average over the
qguenched random variabldg!}. Note that although we
Then C is the mean connectivity per neuron. The secondhave already made the thermal average, in(Egwe main-
term in Eq.(2) is included to mimic the refractory period. If tain the explicit dependence @(t) of the refractory term.
neuroni emits a spike at time (Si(t)=+1), then an extra In a mean-field approach one would replace it gﬂyn(t).
contribution to the PSP-A, acts like a time dependent We have in fact performed this calculation, but the results
threshold which favors the neuron to be at redtdal. If, on  obtained showed to be far from describing the numerical
the other hand, neuron is inactive (S(t)=—1), then it  ones. Instead we preserve such dependence on the history of
works like an usual Hopfield neuron. It is important here tothe system by averaging age®(t) according to Eq(1). In
stress that this model does not distinguish between absolutioing so, we now also include a dependenceteri. The
and relative periods. Instead, it considers a kind of average tsame procedure can now be repeated until we finally attain
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the initial stateS;(0). It can beeasily verified that this with
mechanism vyields to the following expression:

WH{)Z«gAm»+?«§BUAU 1))) AA0=fDmmﬁmmm+hﬂtM)

1 +tanh(B(m(t) +zya))],
+ Sa((EBi(UBi(t—DAI(t=2)))+ - -

1
+ S ((6Bi()B;(t=1) ... Bi(1)A(0)))
BgU=fD4mM$UMU+AEiA»

L1
<< 62, A “')H Bi(t=(a- 1>)>> —tanf(B(m(t) +2y/a)]. 12

tS)
Here 3=1/T=C/Ty, andA=A,/C define the reduced tem-
perature and the reduced refractory parameter, respectively,
andDz is given by

whereA,(t) andB;(t) are given by

Ai(t)=tanH Bo(hf'(t) — Ag) ]+ tank Bohf(1)],

Bi(t)=tant Bo(h{'(t)— Ag)]—tant Boh'()].  (9) dz
Dz= ——e 2R
Next we assume that the temporal correlations among V2w

states of the system at different times can be neglected, i.e.,
all factors at different times in each term in E®) can be
independently averaged: Note that forA=0, B.(t)=0 for all t and only the term
I =0 survives in Eq(11). So we recover the expression ob-
[ tained by Derrida, Gardner, and Zippelius[i0].
<<Ai(t—|)H Bi(t—(q— 1))>> In spite of our approximations, Eq11) still depends on
q=1 the whole history of the neuron. A first simplification con-
sists in truncating the series to a given finite order, that is,
—IA(t_ S (— taking into account only the previous states of the network.
(At I)»H (Bit=(a=1)). (0 In doing so, we first observe that it always yields to a fixed
point attractor, independently of the order of the truncation.
This assumption, together with the strong dilution condi-Finally, we also verify that for small values &f a truncation
tion, makes our problem mathematically tractable. Undeto order 4 seems to be enough to fit the numerical results
these conditionsh;(t) can be considered as a random vari-while for largeA all the terms are necessary. In what follows
able which, in the limitC— o, p—o with «=p/C constant, we assume that the system always evolves to a fixed point,
has a Gaussian distribution whose mean value and varian@and that the corresponding equation takes the form
arem anda, respectively. After some standard calculations,
we then obtain the following approximation for the recurrent
equation:

[A_B" +(-1)'A,B.]. (13

N_Il—\

>

-bll—\

g |
m(t+1)= 2, 5z A-(t-D ], B-=(a-1)
- - HereA. andB.. are given by Eq(12) with m(t)=m for all
t. In Sec. V we will show through the numerical results that
+(-1) t—|)H B, (t—(q— 1))} this assumption is valid for a wide range of valuesAaf
Fortunately, it can be easily verified that in the lirhit> o
(1)  this series converges to the following expression:

1 J’qumuﬂm+zJE—aA»+mmuxm+zJE»]
m=> . (14

2— o'f Dz tanh(B(m+ z\/E— oA))—tanh(B(m+ z\/Z))]
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FIG. 1. Phase diagram vs T for a=0. 00 02 04 06 08 10 12 14

A. Finite number of memories A

Next we consider thee=0 case, for which Eq(14) take
the simple form FIG. 2. The final overlapn as a function ofA for «=0 and for
different values ofT (0, 0.1, 0.4, and 0.5).
1 tanh(B(m—oA))+tanh Sm)

m:i;i 2—o[tanHB(m—cA))—tanh(Bm)]" (19

lines indicate the unstable solutions that separates the basins
of attraction of the two coexisting stable solutions. Finally,
Figure 1 displays the phase diagranvs T. For any value of ~ for large A the system undergoes a dynamical phase transi-
A the system suffers a second order phase transition from #n where the solution with high overlap discontinuously
recognition phaseR) characterized by e+ 0 attractor to a disappears. In this phase the system can only poorly recog-
paramagnetic phasé] characterized by then=0 solution. ~ Nize the memory for any finite initial overlap. For=0.4 the
Since the transition is continuous, we expand Eidy) for ~ System always recognizes the pattern, but its performance
small values ofm, and obtain the following expression for decreases asymptotically to a finite value\asicreases. The

the critical line: same behavior is observed in the interval
0.254<T<0.44 ... . Finally, for T=0.5 we see that the
44 2tanh B.A) — 2tanif(B.A) system suffers a second order dynamical transition from the
¢~ (2+tanh( B.A))2 . (16) retrieval phase to the paramagnetic phase, and this behavior

is qualitatively the same for any temperature such that
As A—0, we then obtain the well known standard Hopfield 0.444<T<1 (see Fig. 1
case withT.=1. On the other hand, foA —o we obtain
T*=4/9=0.444 . .. . In therecognition phase we observe B. Infinite number of memories
three different behaviors. For small valuesfothe retrieval
is almost perfectri=1). For large values oA the recogni-
tion ability is very poor, even af=0, with m=0.5. Finally,
in the intermediate region (0BA<<1) the retrieval regime
depends on the temperature: b 0.254 we found a small

In this section we consider the#0 case. Let us start
analyzing the noiseless ca3e=0 for which we have per-
formed numerical simulations. After same simple calcula-
tions, Eq.(14) takes the following form:

region (C) where these two different retrieval solutions co- m— oA m
exist, one close to 1 and the other close to 0.5. The system erfl ——— | + erfl —
chooses one or the other depending on the initial value of the 1 ( V2a @)
overlap. FofT>0.254 the system goes continuously from the ) =, m— oA m (17)
high recognition regime to the poor one A&sincreases. 2—0 erf(— — erf( _)
In Fig. 2 we present the behavior of the overiapas a V2a V2a

function of A for different values off. ForT=0 and 0.1, we

observe the three different regimes described in Fig. 1. Foln Fig. 3 we present the phase diagranvs «. Note that in
small A the system has only one stable solutibr=1; that  this case the parameterplays a similar role to the tempera-
is, for any macroscopic initial overlap with the memory theture in thea=0 limit. The second order transition lines are
system almost perfectly recognizes the pattern. Msn-  displayed for the truncated series to orders4, 6, and 8
creases the system suffers a first order dynamical transitioand when the whole series is taken into accolstef). Note
where a retrieval attractor emerges with=0.5. The dashed that, as we previously stressed, for smalit is enough to
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FIG. 3. Phase diagramy vs « at T=0. The critical line sepa-
rating the paramagnetic and retrieval phase is showeti=fdr, 6,

FIG. 4. The overlap as a function ef and A at T=0 with
8, andw.

initial overlapmgy=1.

truncate the series to order 4, but for ladyene has to sum
over all the terms. Expanding the former equation for small In Fig. 4 we plotm as a function ofe and A when the

values ofm, we obtain the following relation between the initial configuration is close to the related pattemgt1).

parameterd\ and « at the critical line: For A=0 we recover the transition line obtained[{t0,11].
For largeA and smalle this equation predicts that the sys-
2 tem retrieves the pattern with a low value of the overlap.
1+ erf A )JreAZ/z% Actually, as will be discussed in Sec. 1V, in this region the
\/z_ac systems recognizes through a cycle 2 orbit. Thus our initial
= 2 . (18 assumption concerning the existence of a fixed point attrac-

A tor fails. Nevertheless, in this cyclic orbit the paramater
V2a, fluctuates around a value that agrees very well with that ob-
tained from the fixed point equation.
For A=0 we recover the maximum stored capacity Finally, we also consider th&#0 case. Expanding Eq.
a.=2/7 obtained in[10]. In the opposite limitA—oo, the  (14) for smallm, we obtain after some calculations the equa-
transition line tends asymptotically ®@* =32/817~0.125.  tion for the critical surface in the spac®&,,A),

2+ efrf

2+f Dz(f+—f0)—f sz§(1+f sz+)—f szi(l—f szo)

2
[2+f Dz(f+—f0)}

: (19

—
°
Il
N

wheref, andf, are given by small volume where two different recognition solutions co-
exist, but is not shown in this diagram.
Jaz+A
f.=tanh ———

C

Jaz
, fo=tan|‘( - ) IV. NUMERICAL SIMULATIONS

C

In order to test the results of the analytic approach pre-
In Fig. 5 we show the phase diagram in the «, and A sented in this paper, we also performed numerical simula-
space. FoA =0 and largex the critical line approaches the tions of our model in the noiseless limit. Actually, the ex-
T=0 axis continuously atr,=2/7 [10]. Along the critical treme dilution conditiorC<InN is hard to implement in any
surface the system undergoes a continuous transition fromomputer but, as stressed in Sec. |, in a recent paper Arenzon
the retrieval phase(below) to the paramagnetic phase and Lemke showed for the ultradiluted Hopfield model
(above. Note that below this critical surface there exists a(without refractory periof that the analytical approach is
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FIG. 5. Critical surface separating the retrieval phéselow) . ] ) )
from the nonretrieval phasébove in the space of parameters ~ FIG. 6. The critical line separating the paramagnetic and re-
trieval phases in thé vs « plane atT=0. The solid line corre-

(T,a,A).
sponds to the analytical solution for-o. The full circles corre-
spond to the numerical simulations wi@+ 80 andN= 80 000.

also valid for the less strong conditi@<N. To implement

the evolution of the system we use a synchronous updating . . L
dynamics, which can be conveniently expressed in terms oth For IargeA, the whole h|stor_y of the system IS decisive in
the overlap between the statg§} and the first memory} the behavior of the network. Since the parameias greater
(7) as follows: than the S|g_nal term, _the temporal evolution dr.|ves the_ sys-
tem to a regime wherg) all those neurons for which the first
16 » memory is in an inactive stategij(:—l) align with the
Si(t+ 1):sg{§i1m(t)+ = EERSy(1) memory §=—1); and(b) all those neurons for which the
Cd=1 i71 first memory is in an active stat¢ =1 oscillate between the
active and inactive states. Of course this behavior is destabi-
lized by the effect of the other memories @sncreases. For
small « the system is characterized by a periodic regime
(cycles of order Raround ofm(t—)=0.5.

In Figs. 7a) and {b) we present the overlap as a function
Here the first tern{signa) tends to align the system with the of « for T=0 along two cutsA=0.2 and 0.7, respectively.
stored pattern, the second one acts as a noise due to all tbserve that forA=0.2 the analytical(full line) and the
other uncorrelated patterns, and the last one models the effegimulations (symbolg agree well. On the other hand, for
of the refractory periods. A=0.7 [Fig. 7(b)], the numerical results only describe the

To analyze the recognition ability we always start with anbehavior qualitatively. In particular, note that it shows the
initial configuration correlated with the first memory. After coexisting phase. The dashed line indicates the unstable so-
an initial transient, we measure the temporal average of thiition that separates the two basins of attraction, and which
overlapm(t) between the first pattern and the state of thehas not been studied numerically.
system. This procedure is repeated for 50 different samples In Fig. 8 we plot [m(t)| versus the time for
using different memories, initial configurations, and randomA =1.4, N=80 000, C= 80, and several values ef. Since
number sequences, in order to make a configurational avewe are considering a large value Afandm(0)=1, in the
age m. We work with systems of sizedl=40000 and first Monte Carlo step the dynamics drives the system to a
80 000, and with connectivitf =40 and 80. state withm~0, from which it sometimes evolve to the

In Fig. 6 we display the phase diagra vs « for  antimemory instead of the memory. Because the system rec-
T=0. The full line corresponds to the analytical critical line ognizes both the memory and the antimemory, we prefer to
in the C— limit, and the full circle are the results of our consider the modulus of the overlap. For smal0.0375
numerical simulations foN =280 000 andC=380. Note that, the final overlap converges to the cycle 2 regime with a mean
for small and large values df, both results agree very well. value of aroundn=0.3, signaling the existence of spurious
In the first case(small A) the feedback effect due of the states(not predicted by the analytical approaciAs « in-
statesS=1 is not very important compared to large signal creases, the spurious states vanish, and the overlap reaches
term. In this region the Markovian process given by mean+the attractofmean valugm=0.5. The amplitude of the os-
field approximation presents similar results. cillation of the cycle-2 attractor diminishes with, staying

(20

A
-5 (SM+
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FIG. 8. |m(t)|| vs t for C=80, N=80000, A=1.4, and
a=0.0375(full circles), 0.05(full square$, 0.1 (full triangles, and
0.125(full diamonds.

havior of the system. By neglecting temporal correlations we
were able to take into account the whole history of the sys-
tem, and so analyze how the refractory periods affects the
dynamics and the retrieval ability of our model.

We obtain the complete phase diagram of the model both
analytically and numerically. Unlike the fully connected
Hopfield model with refractory periodgl9], for which a
large value ofA destabilizes the stored patterns completely,

"0.00 0.05 0.10 0.15 0.20 in the strongly diluted version we verify that for small values
of a the system camalwaysretrieve the pattern, irrespective
(b) o of the value ofA. Actually, for largeA the retrieval is per-

formed through periodic orbit&ycle 2 whose mean overlap
FIG. 7. The overlapn vs « at T=0. The full lines correspond is well predicted by the fixed point assumption. For interme-
to the analytical solutions(a) A=0.2 with, my=1, N=80000, diate values ofA and small values of, an unexpected rec-
C=40 (empty circleg, andC=80 (full circles). (b) A=0.70, with  ggnition phase appears where the network can retrieve the
C=80: the empty circles and squares corresponange=0.6 for  nattern with high or low quality, depending on how far from
N=40 000 and 80 000, respectively. The full circles and squareghe patterns one starts. In this region, both the effect of the
correspond tany=1 for N=40 000 and 80 000, respectively. Hopfield term(the signal and the effect of the refractory
period compete, given place to these two different solutions.
Our analytical results agree very well with those obtained
by numerical simulations for small and large values\ofin
near its mean value. For large the attractor converges to a the intermediate region 0s5A<1.0, where our approach
regime with cycle of order greater than 2 or chaotic orbitsseems to be not very gogecause temporal correlations are
(not the retrieval phage importany, it predicts qualitatively well the observed results.

V. CONCLUSIONS

. . ACKNOWLEDGMENTS
In this paper we analyze the dynamics of a neural network

with random dilution and asymmetry in the synaptic cou- We thank the Naleo de Comput@ de Alto Desem-
plings, and also included a threshold that mimics the refracoenho(NACAD) da Coordengao de Projetos e Pesquisa em
tory periods. This last ingredient is introduced through a timeEngenharigf COPPE-UFRYfor use of the Cray. This work
dependent threshold that gives place to feedback effects omas supported by Brazilian agencies CNPq, CAPES, and
the dynamics of the system. We introduce and develop aRINEP, and the Argentinean agencies CONICOR and
analytical method that allows us to study the long-time be-SECyT (UNC).



55 DILUTED NEURAL NETWORK WITH REFRACTORY PERIODS 3327

[1] J. J. Hopfield, Proc. Natl. Acad. Sci. US#9, 91 (1992.

[11] J. J. Arenzon and N. Lemke, J. Phys2/& 5161(1994.

[2] D. J. Amit, H. Gutfreund, and H. Sompolinsky, Phys. Rev. A [12] J. Buchmann and K. Shulten, Biol. CybeB4, 319(1986); 56,

32, 1007(1989; Ann. Phys.173 30 (1987).

[3] A. C. C. Coolen and D. Sherrington, Phys. Rev. Létt. 3886
(1993.

[4] A. C. C. Coolen and S. Franz, J. Phys2& 6947(1994.

[5] H. Gutfreund and M. Mezard, Phys. Rev. Léil, 235(1988.

[6] T. L. H. Watking and D. Sherrington, Europhys. Lett, 791
(1991.

[7] H. Sampolinsky and |. Kanter, Phys. Rev. Lek7, 2861
(1986.

[8] T. Fukai and M. Shiino, Phys. Rev. Le4, 1465(1990.

[9] A. C. C. Coolen and D. Sherrington, J. Phys.2&, 5493
(1992.

[10] B. Derrida, E. Gardner, and A. Zippelius, Europhys. Léit.

167 (1987.

313(1987.

[13] M. Y. Choi, Phys. Rev. Lett61, 2809(1988.

[14] D. Horn and M. Usher, Phys. Rev. 40, 1036(1989.

[15] K. Aihara, T. Takabe, and M. Toyoda, Phys. Lett1A4, 333
(1990.

[16] D. J. Amit, M. R. Evans, and M. Abeles, 1990 Netwdrk381
(1990.

[17] W. Gerstner and J. L. van Hemmen, Netwof 139
(1992.

[18] F. A. Tamarit, D. A. Stariolo, S. A. Cannas, and P. Serra, Phys.
Rev. E53, 5146(1996.

[19] C. R. da Silva, F. A. Tamarit, and E. M. F. Curado, Int. J.
Mod. Phys. C7, 43 (1996.



